Simulations of dwarfs formed in WDM halos at the filtering scale

Vladimir Avila-Reese Instituto de Astronomía, UNAM, México

Pedro Colin (*CRyA-UNAM*) Alejandro Gonzalez-Samaniego & Hector Velazquez (IA-UNAM)

Satellites galaxies and dwarfs in the Local Group, Potsdam 2014

Relevant scales

Free-streaming scale (function of m_{WDM})

below it, no structure formation

Half-mode scale: where Pwdm(k)=0.5 Pcdm(k) (function of mwdm)

start to be notable the differences with CDM
in halo properties and abundance (e.g., AvilaReese+01; Schneider+12; Benson+13; Angulo+13)

Relevant scales

Free-streaming scale (function of m_{WDM}).

Half-mode scale: where Pwdm(k)=0.5 Pcdm(k) (function of mwdm.)

Viel+ 05
$$T_{WDM}(k) = \left[1 + (\alpha k)^{2.0\nu}\right]^{-5.0/\nu},$$
 (3)

where $\nu = 1.12$ and the parameter α is related to m_{WDM} , Ω_{WDM} , and h through

$$\alpha = a \left(\frac{m_{\rm WDM}}{1 \rm keV}\right)^b \left(\frac{\Omega_{WDM}}{0.25}\right)^c \left(\frac{h}{0.7}\right)^d h^{-1} \rm Mpc, \quad (4)$$

A: no cosmic structures form
B: 3D enhancements and "proto-halos"
C: classical halos (Angulo+ 2013)

At M_{hm} , the WDM halo MF is close to its maximum

Previous and our hydro WDM simulations

Libeskind+13: galaxy group simulation
Herpich+14: halos at z=0 ≥ 10xM_{hm}.
Governato+14: 1 halo at z=0, 2xM_{hm}.

Colín+ 14: halos at $z=0 \leq M_{hm}$ and $\sim 20 \times M_{hm} (M_v=2.3 \times 10^{10} M_{\odot}/h)$ Well above the artificial fragmentation limit given in Wang&White 07, even at high z's.

H+ART code (Kravtsov+ 97,03): cooling, advection of metals, cosmological UV heating. "Standard" SF and stellar (thermal) feedback implementation (see Colin +10; Avila-Reese+11; Gonzalez-Samaniego +14) zoom-in simulations of distinct halos m_{DM}=6.6×10⁴ M☉/h

(for thermal relic particles) 5 z=01012 z=2Herpich+ Governato+ 1011 < Mhm M_o) -u Mass 1010 V Mts 10⁹ artificial fragmentation (for $m_{wdm} = 1.2 \text{ keV}$) 108 0.1 10 m_{wdm} (keV)

All the WDM_{1.2} and WDM_{3.0} zoom-in simulations have their CDM counterparts (presented in González-Samaniego+14).

The WDM galaxies at the M_{hm} scale are more disky, extended, and less centrally concentrated than their CDM counterparts.

Halo and stellar mass assembly histories

-Halos at the filtering scale start to assemble later than the CDM ones.

-The stellar mass assembly is delayed and today M_* is smaller than in the CDM runs (\Rightarrow lower M_*/M_{vir} ratio)

Halo and stellar mass assembly histories

-For halos ~20xM_{hm}, the differences are minimal (see also Herpich+14)

Star formation histories

-Bursty SFHs in the CDM (see Gonzalez-Samaniego+14) and in the WDM cases

-For halos at the filtering scale, the starting of SF is delayed by ~ 2 Gyr and it keeps more active until $z\sim 0$ than in the CDM counterparts.

Cumulative SFHs (WDM_{1.2} vs CDM)

Stellar and gas surface density profiles (z=0)

The stellar R_e are 1.3-3x larger in the WDM_{1.2} galaxies than in the CDM counterparts.

Stellar and gas surface density profiles (z=0)

The stellar R_e are 1.3-3x larger in the WDM_{1.2} galaxies than in the CDM counterparts.

The gas distribution in the $WDM_{1,2}$ galaxies roughly follows the stellar one; in the CDM counterparts.

Circular velocity decomposition (z=0)

-WDM_{1.2} dwarfs have V_{max} 1.2-1.6x lower than CDM ones. -The V_c profiles of WDM_{1.2} dwarfs are shallower, mainly because the stars+gas profiles are much less concentrated than the CDM ones. -For WDM_{3.0} dwarfs, the differences with CDM dwarfs are small (see also Herpich+14).

The halo mass density distribution

only-DM sim's:

WDM halos are ~NFW (no shallow cores), though less concentrated (Avila-Reese+01; Colín +00,08; Lovell+12; Schneider +12; Anderhalden+13)

The halo mass density distribution

only-DM sim's:

WDM halos are ~NFW (no shallow cores), though less concentrated (AviIa-Reese+01; Colín +00,08; Lovell+12; Schneider +12; Anderhalden+13)

hydro sim's:

in the WDM_{1.2} runs, the cores are shallower than in the CDM ones!

SFH

cumulative

why do shallow cores form?

 lower concentrations → more efficient effect of outflows
 no mergers to regrow cusps and to increase baryon dens.
 later SFHs → survival of cores (see also Bullock's talk)

why do shallow cores form?

 lower concentrations → more efficient effect of outflows
 no mergers to regrow cusps and to increase baryon dens.
 later SFHs → survival of cores (see also Bullock's talk)

<u>why the inner stellar SDs are</u> <u>flat?</u>

lower halo spin parameters?
 -No (λ can be lower or higher)
 late stellar assembly → lower densities in general
 no mergers → no central-concentration formation

Conclusive remarks

•First N-body/hydro simulations of galaxies at the filtering scale. The WDM galaxies at this scale differ from their CDM counterparts in that:

- assemble later (mass-weighted ages younger by ~1.5-5 Gyr)
- have lower inner stellar SDs and more extended profiles (R_e larger by 1.3-3x)
- have lower V_{max} values by 1.2-1.6x, and shallower $V_c(r)$
- have lower M* and higher gas fractions

•If $m_{WDM}>3$ keV, then $M_{hm}<1.5\times10^9M_{\odot}$ --> $M_*<5\times10^6M_{\odot}$; field dwarfs of these masses are expected to be more extended, disky and gaseous, with lower V_{max} and shallower cores than their CDM counterparts.

•As the halos are larger than M_{hm} , the galaxies are more similar to the CDM counterparts.