The Formation History of the Ultra-Faint Dwarf Galaxies

Tom Brown Space Telescope Science Institute

The Formation History of the Ultra-Faint Dwarf Galaxies

Jason Tumlinson (STScI), Marla Geha (Yale), Josh Simon (Carnegie), Luis Vargas (Yale), Don VandenBerg (U of Victoria), Evan Kirby (CalTech), Jason Kalirai (STScI), Roberto J.Avila (STScI), Mario Gennaro (STScI), Harry Ferguson (STScI), Ricardo Munoz (U de Chile), Puragra Guhathakurta (UCO/Lick), Alvio Renzini (INAF)

ACDM is consistent with:

- large-scale structure
- cosmic microwave background
- abundances of light elements
- expansion of universe

However:

ACDM predicts more dark matter sub-halos than seen as visible dwarf galaxies

"missing satellite problem"

B. Moore (U. of Zurich)

Theoretical solution - reionization (Bullock+ 2001; Ricotti & Gnedin 2005)

small dark-matter halos start with little gas
reionization of universe heats this gas
thermal pressure boils gas out of halo
gas is not re-accreted

Dark Matter Distribution

Tumlinson (2010)

350 kpc

Subhalos with star formation continuing past reionization

Tumlinson (2010)

Fossil subhalos - star formation truncated by reionization

Tumlinson (2010)

Most subhalos never form stars at all

Tumlinson (2010)

SDSS Field of Streams

Belokurov+ (2007)

SDSS Field of Streams

Belokurov+ (2007)

Faint satellites & streams found around MW & M31: Willman+ 2005; Zucker+ 2004,2005,2006; McConnachie+ 2009; Majewski+ 2007; Irwin+ 2008; Belokurov+ 2006; Martin+ 2009; etc.

UFDs are old

Kirby+ (2008, 2013)

Frebel+ (2010)

Wavelength [Å]

Wavelength [Å]

Wavelength [Å]

classical dSphs

Globular Clusters

10

 r_{h} (pc)

• • ultra-faint dwarfs

1000

100

Harris (1996) Mateo (1998) Martin+ (2008)

-2

-] 4

-12

-10

-8

-6

(mag)

classical dSphs

Globular Clusters

10

• • ultra-faint dwarfs

1000

100

(pc)

rh

Harris (1996) Mateo (1998) Martin+ (2008)

-2

-] 4

-12

-10

-8

-6

(mag)

16 orbits

Leo IV

SNR~100 at MSTO

faint limit V~28.5

Leo IV 6 orbits SNR~100 at MSTO faint limit V~28.5

MSTO star V=24.9

Leo IV 16 orbits SNR~100 at MSTO faint limit V~28.5

M92 (NGC 6341)

l orbit

[Fe/H]=-2.3 (m-M)_o=14.62 E(B-V)=0.023

Synthetic CMD fitting

- Isochrones with updated physics
 - He diffusion, new nuclear reaction rates
- Abundance profile appropriate to UFDs
 - Extended metallicities down to [Fe/H] = -4
 - [alpha/Fe] = +0.4
 - [O/Fe] enhanced at low [Fe/H]
- Fine isochrone grid
 - -4 < [Fe/H] < -1 0.2 dex steps
 - 8 < Age < 14.5 Gyr 0.1 Gyr steps
- Isochrones → synthetic CMDs
 - Over 5 million artificial star tests per galaxy
 - Completeness, scatter, CTE, calibration residuals
- Two-burst model
- Ages float but MDF matches spectra
- SFHs relative to M92 age of 13.2 Gyr

Comparison of observed CMD and random realization of best-fit model

Which CMD shows the observed CMD? Orange or Blue?

Hercules

(2014)

+0.1 -0.1 +0.1 $\Delta(m_{606}-m_{814})$

Brown+ (2014) Age uncertainties are statistical (systematic age uncertainty is ~I Gyr)

Summary

- The UFD populations look ancient, metal-poor, and similar to one another
- For five of the UFDs, the best-fit model forms 75% of the stars by z~10
- For all six of the UFDs, the SFH is consistent with:
 - 80% of the stars forming by z~6
 - 100% of the stars forming by z~3
- Data are consistent with truncation by reionization
 However, significant uncertainties in absolute age (~I Gyr; distance, abundance profile)