- The Formation History
of the
Ultra-Faint Dwarf Galaxies

Tom Brown
Space Telescope Science Institute

- The Formation History of the
Ultra-Faint Dwarf Galaxies
Jason Tumlinṣon (STScl), Marria Geha (Yale), Josh Simon (Carnegie), Luis Vargas (Yale), Don VandenBerg (U of Victoria), Evan Kirby (CalTeçh), Jason Kaliraí (ST'Scl), Roberto J.Avila (ST̊Scl), *. Mario Gennaro (STScl), Harry, Ferguson (STScl), Ričardo. Munoz (U de Chile),', Puragra Guhathakurtá (UCO/Lick), Alvio Renzini (INAF).

B. Moore (U. of Zurich)

Theoretical solution - reionization

(Bullock+ 200I; Ricotti \& Gnedin 2005)

- small dark-matter halos start with little gas
- reionization of universe heats this gas
- thermal pressure boils gas out of halo
- gas is not re-accreted

Tumlinson (2010)

Subhalos with star formation continuing past reionization

Fossil subhảlos - star fórmation truncạted by reionization

Most subhalos never form stars at all

SDSS Field of Streams

Belokurov+ (2007)

SDSS Field of Streams

Belokurov+ (2007)
Faint satellites \& streams found around MW \& M3I:
Willman+ 2005; Zucker+ 2004,2005,2006;
McConnachie+ 2009; Majewski+ 2007; Irwin+ 2008;
Belokurov+ 2006; Martin+ 2009; etc.

UFDs are old

UFDs are metal poor, but with significant metallicity spread

Kirby+ $(2008,2013)$

Norris+ (2010)

Frebel+ (2010)

Leo IV

16 orbits

SNR~100 at MSTO
faint limit
V~28.5

Leo IV

I6 orbits

SNR~100 at MSTO
faint limit
V~28.5

MSTO star $\mathrm{V}=24.9$

- MSTO star
 $\mathrm{V}=24.8$

Leo IV

I6 orbits

SNR~100 at MSTO
faint limit
V~28.5

M92
 (NGC.634I)

I orbit

[Fe/H] $=-2.3$
$(m-M)_{\circ}=14.62$ $E(B-V)=0.023$

Brown+ (2014)

CMDs of the UFDs, all look very similar

Composite UFD CMD looks like a single-age population (to first order)

CMDs of the UFDs, all look very similar

Composite UFD CMD looks like a single-age population (to first order)

CMDs of the UFDs, all look very similar

Composite UFD CMD looks like a single-age population (to first order)

CMDs of the UFDs, all look very similar

Composite UFD CMD

 looks like a single-age population (to first order)

CMDs of the UFDs, all look very similar

Composite UFD CMD looks like a single-age population (to first order)

CMDs of the UFDs, all look very similar

Composite UFD CMD

 looks like a single-age population (to first order)

Synthetic CMD fitting

- Isochrones with updated physics
- He diffusion, new nuclear reaction rates
- Abundance profile appropriate to UFDs
- : Extended metallicities down to $[\mathrm{Fe} / \mathrm{H}]=-4$
- $\quad[\mathrm{alpha} / \mathrm{Fe}]=+0.4$
- [O/Fe] enhanced at low [Fe/H]
- Fine isochrone grid
- $-4<[\mathrm{Fe} / \mathrm{H}]<-1 \quad 0.2$ dex steps
- 8 < Age < 14.5 Gyr 0.1 Gyr steps
- Isochrones \rightarrow synthetic CMDs
-. Over 5 million artificial star tests per galaxy
- Completeness, scatter, CTE, calibration residuals
- Two-burst model
- Ages float but MDF matches spectra
- SFHs relative to M92 age of I3.2 Gyr

Comparison of observed CMD and random realization of best-fit model

Which CMD shows the observed CMD? Orange or Blue?

Hercules

<age> = I 3.3 +/- 0.3 Gyr

Com Ber
<age> $=13.9$ +/- 0.3 Gyr

<age> = I2.7 +/- 0.3 Gyr

Summary

- The UFD populations look ancient, metal-poor, and similar to one another
- For five of the UFDs, the best-fit model forms 75% of the stars by $\mathbf{z \sim 1 0}$
- For all six of the UFDs, the SFH is consistent with:
-80% of the stars forming by $z \sim 6$
- I00\% of the stars forming by z~3
- Data are consistent with truncation by reionization
- However, significant uncertainties in absolute age (~| Gyr; distance, abundance profile)

