

Touching the Void: A Striking Drop in Stellar Halo Density Beyond 50 kpc

Alis Deason – Hubble Fellow UCSC

ICHING

Vasily Belokurov, Sergey Koposov (Cambridge), Connie Rockosi (UCSC)

EAGLE Simulation

Credit: Cosmic Universe App Virgo Consortium

Dark Matter

EAGLE Simulation

A

Credit: Cosmic Universe App Virgo Consortium Dark Matter:

6

Gas:

Galaxies: 🚫

Stars

ERIS Simulation: High Resolution Milky Way Type Galaxy

Image Credit: Annalisa Pillepich

480 kpc

Stellar halo ---- only ~1% of the total luminosity of the Galaxy, but allows us to trace the dark matter out to ~r_{vir}

Milky Way Mass

Halo stars tracers of Galactic potential

Radial Velocities of Halo Tracers

Deason et al. 2012

The Mass-Anisotropy-Density Degeneracy

Other Mass Estimates

(non-exhaustive, biased towards constraints from simulations)

- If Leo I is bound, M_{vir} > 10¹²M_☉ (Boylan-Kolchin et al. 2013)
- Abundance matching predicts M_{vir} ~ 2 × 10¹²M_☉ (Guo et al. 2010; Moster et al. 2013)
- ACDM+MCs, M_{vir} ~ 1.2 x
 10¹²M_☉ (Busha et al. 2010)
- Mass estimates from halo stars on the low side relative to predictions from simulations. But significant degeneracies remain.

Accretion History from Halo Stars

- Dark matter halos are approximately **universal** (e.g. NFW).
- Stellar halo formation is a much more stochastic
 - process:
 - Plummeting star formation efficiency in low mass dwarfs (and likely lots of scatter in stellar masshalo mass relation).
 - Deeply embedded in dark halos (get stripped later)
- Lumpier accretion plus extremely long mixing times leads to a greater variety of stellar halo profiles.

Accretion History from Halo Stars

Stellar Halo Density Profile is Key

Simple(?) task of "counting stars" is key for constraining total mass and accretion history of the Galaxy.

> Exciting prospect for studies of stellar halos **beyond the local group** – surface brightness profiles (see later).

In practice, not so simple...

□Mix of populations with different absolute magnitudes, distances.

To probe out to large radii, need to "see through" foreground stars.

□Fainter magnitudes -> larger photometric errors and galaxy contamination.

SDSS IMAGE

The Milky Way Stellar Halo Density Profile (r < 30 kpc) Pre-2010(ish) large area surveys

The "Broken" Milky Way Stellar Halo

- Beyond r ~ 25 kpc, the stellar density in the Milky Way falls off more rapidly; Sesar et al. 2011 (MSTO, CFHTLS), Deason et al. 2011 (BHB, SDSS)
 See Deason Belokurov, Evans, Johnston 2012 for possible origin of break
- See Deason, Belokurov, Evans, Johnston 2013 for possible origin of break.
- Does this decline continue to larger distances?

Touching the Void

Deason, Belokurov, Koposov, Rockosi 2014, ApJ, 787, 30, arXiv:1403.7205

THE ASTROPHYSICAL JOURNAL, 787:30 (16pp), 2014 May 20 © 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/787/1/30

TOUCHING THE VOID: A STRIKING DROP IN STELLAR HALO DENSITY BEYOND 50 kpc

A. J. DEASON^{1,4}, V. BELOKUROV², S. E. KOPOSOV^{2,3}, AND C. M. ROCKOSI¹

¹ Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA 95064, USA; alis@ucolick.org ² Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK ³ Moscow MV Lomonosov State University, Sternberg Astronomical Institute, Moscow 119992, Russia Received 2014 February 16; accepted 2014 March 26; published 2014 May 1

ABSTRACT

We use A-type stars selected from Sloan Digital Sky Survey data release 9 photometry to measure the outer slope of the Milky Way stellar halo density profile beyond 50 kpc. A likelihood-based analysis is employed that models the *ugr* photometry distribution of blue horizontal branch and blue straggler stars. In the magnitude range 18.5 < g < 20.5, these stellar populations span a heliocentric distance range of: 10 $\leq D_{BS}/kpc \leq$ 75, 40 $\leq D_{BHB}/kpc \leq$ 100. Contributions from contaminants, such as QSOs, and the effect of photometric uncertainties, are also included in our modeling procedure. We find evidence for a very steep outer halo profile, with

Pushing SDSS to the Limit

- Northern and Southern sky coverage (14,000 deg²) |b| > 30°: exclude low latitudes
- 18.5 < g < 20: probes distances out to ~100 kpc using Blue Horizontal Branch stars (BHBs)
- BHBs bright, approximate standard candles
- Photometric errors and contamination an issue at fainter magnitudes.

Modeling ugr Photometry

Modeling ugr Photometry

QSO model from **Bovy et al. 2011** XDQSO algorithm

Likelihood Method

1. Define **intrinsic** A-type star and QSO models in *ugr* space.

A-type star model depends on 1) **density profile** parameterization and 2) **absolute magnitude** calibration for BHB and BS stars.

Intrinsic QSO model fixed.

2. **Convolve** intrinsic model with photometric uncertainties: takes into account populations scattering in/out of *ugr* selection box.

3. Given model density parameterization and SDSS DR9 photometry find $log \mathcal{L} = \sum_{i=1}^{N} log \mathcal{L} = \sum_{i=1}^{$

$$og\mathcal{L} = \sum_{i=1}^{N_{tot}} \log \left[\{ (1 - f_Q) \tilde{\nu}_* (ugr_i, m_{g,i}, \ell_i, b_i) + f_Q \tilde{\nu}_Q (ugr_i, m_{g,i}, \ell_i, b_i) \} cosb_i \right].$$

Stellar Halo Density Model

Results

Very steep outer halo profiles favored, even if large structures like SGR are included or excluded.

 $\alpha \sim 6$ beyond 50 kpc, cf. $\alpha \sim 3-3.5$ in M31

RED = inc SGR, BLACK = exc. SGR

Implications for Milky Way (and M₃₁) Accretion History

Implications for Milky Way Mass

The Future: External Galaxies

- Stellar halo density profiles: accessible for galaxies beyond the local group.
- Potentially can constrain accretion histories for large samples of galaxies.
- DragonFly project, Ghosts (HST)
- Stacking can be useful, but lose detail on individual galaxies, and washes out diversity in stellar halos.

The Future: Simulated Stellar Halos

- Large halo-to-halo scatter in stellar halo properties.
- Current samples limited to ~6-11 halos. Needs to increase substantially (i.e. 100's) to put MW/M31 accretion histories in context.
- Several groups working on this: dm tagging (Stanford/Wechsler et al., MIT/Frebel et al. – Caterpillar project, Cambridge/ Belokurov et al.), hydro sims (Arepo/Illustris, Virgo consortium/EAGLE)

Summary

- Stellar halo density profile key for constraining total mass and accretion history of the Galaxy.
- Steep fall off in MW stellar halo density beyond 50 kpc:
 - Suggests relatively quiescent recent accretion history for the MW (cf. M₃₁)
 - May be the "missing information" needed to bring MW mass estimates from halo stars and satellites into agreement.
- Unlike several MW/M31 stellar halo properties, global density profile can be measured in galaxies beyond the local group. Exciting prospect for the future.