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@ B€CC | The cosmic power spectrum: from
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the CMB to the 2dFGRS

The cosmic power spectrum: from
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DETECTION OF AN U S _ _
We identify a weak line at E ~ 3.5 keV in X-ray spectra of the Andromeda galaxy and the Perseus galaxy

cluster — two dark matter-dominated objects, for which there exist deep exposures with the XMM-Newton X-ray
observatory. Such a line was not previously known to be present in the spectra of galaxies or galaxy clusters.
Although the line is weak, it has a clear tendency to become stronger towards the centers of the objects; it is

Esra BurLsur'?, M

arXiv:1402.4119v1 [astro-ph.CO] 17 Feb 2014

1
Har stronger for the Perseus cluster than for the Andromeda galaxy and is absent in the spectrum of a very deep
“blank sky” dataset. Although for individual objects it is hard to exclude the possibility that the feature is due
to an instrumental effect or an atomic line of anomalous brightness, it is consistent with the behavior of a line
originating from the decay of dark matter particles. Future detections or non-detections of this line in multiple
We detect a wea astrophysical targets may help to reveal 1ts nature.

spectrum of 73 ¢

independently show the presence ot the line at consistent energies. When the tull sample is divided
into three subsamples (Perseus, Centaurus+Ophiuchus+Coma, and all others), the line is seen at
> 3o statistical significance in all three independent MOS spectra and the PN “all others” spectrum.
The line is also detected at the same energy in the Chandra ACIS-S and ACIS-I spectra of the Perseus
cluster, with a flux consistent with XMM-Newton (however, it is not seen in the ACIS-I spectrum of
Virgo). The line is present even if we allow maximum freedom for all the known thermal emission
lines. However, it is very weak (with an equivalent width in the full sample of only ~ 1 eV) and located
within 50-110 eV of several known faint lines; the detection is at the limit of the current instrument
capabilities and subject to significant modeling uncertainties. On the origin of this line, we argue that
there should be no atomic transitions in thermal plasma at this energy. An intriguing possibility is
the decay of sterile neutrino, a long-sought dark matter particle candidate. Assuming that all dark
Mmatter 1s 10 sterile neutrimos with mg = 25 = 7.1 keV, our detection in the full sample corresponds to

a neutrino decay mixing angle sin2(29) ~ 7 x 107!, below the previous upper limits. However, based
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THE OBSERVED PROPERTIES OF DARK MATTER ON SMALL SPATIAL SCALES
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ABSTRACT

We present a synthesis of recent photometric and kinematic data for several of the most dark matter dominated
galaxies, the dwarf spheroidal Galactic satellites, and compare them to star clusters. There is a bimodal distribution
in half-light radii, with stable star clusters always being smaller than ~30 pc, while stable galaxies are always larger
than ~120 pc. We extend the previously known observational relationships and interpret them in terms of a more
fundamental pair of intrinsic properties of dark matter itself: dark matter forms cored mass distributions, with a core
scale length of greater than about 100 pc, and always has a maximum central mass density within a narrow range.
The dark matter in dSph galaxies appears to be clustered such that there 1s a mean volume mass density within the
stellar distribution which has the very low value of less than about 0.1 M, pc 3 (about 5 GeV/c? cm~3). All dSph’s
have velocity dispersions at the edge of their light distributions equivalent to circular velocities of ~15 km s~
The maximum central dark matter density derived is model dependent but is likely to have a characteristic value
(averaged over a volume of radius 10 pc) of ~0.1 M, pc~3 for the favored cored dark mass distributions (where it is
similar to the mean value), or ~60 M _ pc—> (about 2 TeV/c? cm™?) if the dark matter density distribution is cusped.
Galaxies are embedded in dark matter halos with these properties; smaller systems containing dark matter are not
observed. These values provide new information about the nature of the dominant form of dark matter.
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Evidence for warm dark matter?

THE ASTROPHYSICAL JOURNAL, 663:948—-959, 2007 July 10
THE OBSERVED PROPERTIES OF DARK MATTER ON SMALL SPATIAL SCALES

1 1,2 4

GERARD GILMORE, MARK I. WILKINSON, >~ Rosemary F. G. WYSE,3 JAN T. KLEYNA, " ANDREAS KocH,
1

N. WyN Evans,” anp Eva K. GREBEL

6,7

-------

e Draco
Leall
— [ o]

e (' ariNA

— S LATIS

e g Minor

«— NFW asymptotic

slope

Inferred density profiles
for 6 dwarf spheroidals

“...dark matter forms cored
mass distributions, with a core
scale length of greater than
about 100pc, and always has a
maximum central density in a
narrow range...”

10

r [kpc]

“...(keV) sterile neutrino particles have been discussed as relevant in just the

spatial and density range we have derived here.”
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1. Such large cores are NOT expected in WDM

2. There is NO evidence for “cores” in dwarf spheroidals
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The thermal velocities of WDM particles induce cores

Liouville’s theorem - upper bound in fine-grained space density:

4
_ 9y

Jrp = 2(27h)3"

Shao, Gao, Theuns, Frenk 13

MaCCiO et al . ‘1 2 Institute for Computational Cosmology
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The thermal velocities of WDM particles induce cores
Liouville’s theorem —> upper bound on fine-grained ph. space den.
4

gm,

Jrp = 2(27h)?”
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By requiring f=f,, m

Shao, Gao, Theuns, Frenk 13
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‘x-?é Core radii in WDM halos
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The thermal velocities of WDM particles induce cores
Liouville’s theorem —> upper bound on fine-grained ph. space den.
4
gm,

Jrp = 2(27h)3"

C
Phase space arguments - r. = p

7 \2 1/2 1/2
IJ m c O 8
(8.2keV) (km/s) (2)

core radius

For my,py > 1.5 keV, the core radii in WDM models are of
10 times smaller than the values inferred by Gilmore et al. !
=> core radii in dwarfs NOT relevant in WDM models

Shao, Gao, Theuns, Frenk 13
see also Maccio et al ‘12
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Dwarf galaxies around the Milky Way
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Dwarf sphs: cores or cusps?
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(1) centrally concentrated, high
[Fe/H]

(i) extended, low [Fe/H]

2
r<o,, >
G

Walker ‘10; Wolf et al ‘10—>

if r=r,,, n=2.5, independently of
model assumptions!

M(<r)=pu

Walker & Penarrubia

11

+JBECE | The DM halo of the Sculptor dwarf
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+JBCLC |The DM halo of the Sculptor dwarf
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Strigari, Frenk & White ‘14

Distribution function analysis of 2 metallicity pop. data of Battaglia et al.

J \ @ J
Parametrize: g(J) = (J_B> +<J_ﬁ>

h(E) — NE®*(EY+ EOY 43y, — E)¢  for E < ®im
]o forE > @i,

Find best-fit parameters using MCMC
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+JBCLC |The DM halo of the Sculptor dwarf
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+JBCLC |The DM halo of the Sculptor dwarf
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NFW best-fit parameters as expected in ACDM
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+JBCLC |The DM halo of the Sculptor dwarf
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Comparison with Walker & Penarrubia ‘11
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2.6

WP ‘11 use:

2
r<o,’ >

G

M(<r)=u

and assume u = 2.5 for both

populations

(Walker et al ‘10, Wolfe et al “10)

For our best-fit model however:

2.6 for metal poor

2.9 for metal rich
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Cores or cusps in the dwart

sph. satellites of the MW?



cold dark matter warm dark matter

Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns,

Boyarski & Ruchayskiy ‘12




~25 satellites known
in the MW

®
V/ 100,000 light years
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cold dark matter warm dark matter
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Reionization heats gas in small halos above T,
preventing it from cooling and forming stars

upernovae feedback expels gas

% %
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Luminosity function of Local
Group satellites

® Median model - correct
abund. of sats brighter than
M,=-9 and V,,, > 12 km/s

® Model predicts many, as yet
undiscovered, faint satellites

®* LMC/SMC should be rare
(~2% of cases)

Benson, Frenk, Lacey, Baugh & Cole 02
(see also Kauffman etal '93, Bullock et al

log dN/dM, (per central galaxy)
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@ Luminosity Function of Local
University of Durham Group S atelll teS

® Median model - correct
abund. of sats brighter than 2
M,=-9 and V> 12 km/s ’

T rrrrrrrrrrrrrrr
Koposov et al 08

® Model predicts many, as yet
undiscovered, faint satellites

®* LMC/SMC should be rare

_25-75%
(~2% of cases)

a1k 10-90%
| s 5-95%
. mmmm 0-100%

Mateo (1998)

log dN/dM, (per central galaxy)
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Benson, Frenk, Lacey, Baugh & Cole '02 My
(see also Kauffman etal ‘93, Bullock et al '00)
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@ Luminosity Function of Local
University of Durham Group Satellltes
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i within 280 kpc
Koposov et al ‘08

® Median model - correct
abund. of sats brighter than
M,~=-9 and V> 12 km/s

10.0}

® Model predicts many, as yet
undiscovered, faint satellites
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The Eagle Simulations SB

EVOLUTION AND ASSEMBLY OF GALAXIES AND THEIR ENVIRONMENTS

The Hubble Sequence realised in cosmological simulations

Irr Trayford et al ‘14



calibrated to provide
acceptable match to
galaxy stellar mass
function over range
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VIRG#®  The “satellite problem” in CDM is a myth!

EAGLE full
hydro

simulations

Local Group

Sawala et al ‘14
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EAGLE Local Group simulation

Stellar mass functions
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The "missing satellite problem”

— N—

.. I think
I gawr 1t gtill

Institute for Computational Cosmology




e COM

WDM

1.6keV



2 University of Durham

Luminosity Function of Local
Group Satellites in WDM

No of sats # with:

* host halo mass

* WDM particle mass

Kennedy, Cole & Frenk ‘13
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No of sats # with:

* host halo mass

* WDM particle mass

Kennedy, Cole & Frenk ‘13

Luminosity Function of Local
Group Satellites in WDM
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Mon. Not, R. Astron. Soc. 283, L72-L78 (1996)

The cores of dwarf galaxy haloes

1996 | Baryon effects

Julio F. Navarro,"** Vincent R. Eke? and Carlos S. Frenk?

Let baryons cool and
condense to the
galactic centre

Rapid ejection of large
fraction of gas during
starburst can lead to a
core in the halo dark
matter density profile

The cores of dwarf galaxy haloes L75

o |

Pl | L a1 " " i o el R
-15 =1 -05 0 05 1
logy T

Figure 3. Equilibrium density profiles of haloes after removal of the disc. The solid line is the original Hernquist profile, common to all cases.
The dot-dashed line is the equilibrium profile of the 10 000-particle realization of the Hernquist model run in isolation at ¢=200. (a)
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TICC Cores in dwarf galaxies
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The effect of baryons on the DM halo
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@l{;@ The MW halo mass: baryon effects
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1.2
Reduction in V__, due to max
SN feedback: 1.1F .

- Lowers halo mass &
thus halo growth rate §1.0
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Probability of massive subhalos
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Probability of massive subhalos
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Estimates of the MW halo mass
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U (D Conclusions
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Dwarf galaxies may hold the clue to the identity of the dark matter
WDM:

* Sterile neutrino is an attractive candidate

* Phase space —> no significant cores

* Satellite abundance requires M, 1., > 1.2 x 1072 M

CDM:

* Cusps in real sats consistent with kinematic data (even Sculptor)
* Core formation in simulations depend on detailed subgrid physics

* When gal formation taken into account NO “satellite problem”

* Baryon effects lower V. - “too big to fail” avoided if
Myw hato < 2.6 X 1072 M



