Exploring the Local Volume in Simulations: Results from the ELVIS Suite

Shea Garrison-Kimmel, University of California, Irvine

with: Mike Boylan-Kolchin, James Bullock, and Kyle Lee

Leibniz-Institut für Astrophysik Potsdam

The increasingly-less-Local Group

The increasingly-less-Local Group

The increasingly-less-Local Group

ELVIS: Exploring the Local Group

Twenty-four paired halos in LG-like pairs

- Twenty-four mass-matched isolated analogues
- Spans the suggested parameter space for the LG

e.g., $1.02 \times 10^{12} M_{sun} \leq M_v \leq 2.86 \times 10^{12} M_{sun}$

- Reliably identify halos expected to host the ultrafaint dwarf satellites (M_{peak} = 6 x 10⁷ M_{sun})
- Up to 15 million particles within R_v and up to 61 million within uncontaminated regions, which are as large as 43 Mpc³

ELVIS: Exploring the Local Group

Twenty-four paired halos in LG-like pairs

Twenty-four mass-matched isolated analogues

All of the ELVIS data are **publicly available** at <u>localgroup.ps.uci.edu/elvis/data.html</u>

Up to 15 million particles within R_v and up to 61 million within uncontaminated regions, which are as large as 43 Mpc³

Subhalo mass functions in ELVIS

Normalized subhalo mass functions agree perfectly

Field halo mass functions in ELVIS

Fields surrounding (~1 Mpc) isolated MW-size halos contain about 80% fewer halos at fixed mass

Field halo mass functions in ELVIS

You must account for Andromeda to accurately predict abundance and kinematics of Local Field halos

Fields surrounding (~1 Mpc) isolated MW-size halos contain about 80% fewer halos at fixed mass

Abundance Matching

Testing AM extrapolations

Behroozi+2013 abundance matching predicts too many low mass galaxies, even where observations are complete

Testing AM extrapolations

Modified Behroozi+2013 using a shallower low-mass slope (Baldry+2012) agrees well

Testing AM extrapolations

NOTE: Adding scatter requires an $M_{star}-M_{halo}$ relation that falls off even more rapidly at low M_{halo}

Modified Behroozi+2013 using a shallower low-mass slope (Baldry+2012) agrees well

Predicting LSST discoveries

In the field, where environmental baryonic effects can be largely ignored, there are **still** more than 15 left-over, massive halos that remain large today

Resolving the Hubble flow

Resolving the Hubble flow

Resolving the Hubble flow

Resolving the Hubble fl res particle

Coming soon...

ELVIS on FIRE: Simulating the Local Group with Hopkins et al. hydrodynamics

Coming soon...

Conclusions

- ELVIS: a publicly-available suite of high-resolution zoom-in simulations targeting at LG-like pairs of halos, resolving regions beyond 1.5 Mpc from the barycenter
- You must simulate full Local Groups in order to make accurate predictions on ~1 Mpc scales
- The M_{star}-M_{halo} relation is constrained down to M_{star} ~ 10⁶ Msun; a relation as flat as Behroozi+2012 overpredicts the observed counts at 10⁶ M_{sun}; adding scatter requires an even steeper relation (worsens Behroozi extrapolation)
- There is a systematic overabundance of large halos in the Local Field (TBTF), independent of the specifics of AM
- Coming soon: ELVIS on FIRE