de Strasbourg

The PAndAS and PSI views of the M3I satellite system

Nicolas Martin
(Strasbourg Observatory \& MPIA, Heidelberg)
and the PAndAS \& Local Group Pan-STARRSI teams

PAndAS

The Pan-Andromeda Archaeological Survey (2008-201 I)

McConnachie et al. (2009)
Ibata et al. (20| 4)

PAndAS survey

metal-poor intermediate metal-rich

\odot

Two examples in PAndAS

And XXI
$M_{v}=-9.9 \pm 0.6$
$m_{h}=990 \pm 160 p c$

Two examples in PAndAS

Martin et al. (2009)

Automating the dwarf galaxies search

- Automated search:
- Mv>-6.5 candidate dwarf galaxies
- completeness function as $f\left(X, Y, r_{h},[\mathrm{Fe} / H 1], m-M, \ldots\right)$
\rightarrow to "observe" simulations
- Full statistical analysis of spatial + CMD information
- Accounting for varying MW foreground contamination, very structured M3 I "contamination"

Automating the dwarf galaxies search For every location in PAndAS
 Martin et al. (20 Ib)

Exponential profile $\left(r_{h}\right) \circlearrowleft$

Invisible PAndAS dwarf galaxies?

Martin et al. (20|3b)

A handful followed up to push the M3I dwarf galaxy luminosity function

The satellite system of M3 I

A homogeneous analysis of all PAndAS dwarf galaxies

- TRGB distances (Conn et al. 2011, 2012, 2013)

A homogeneous analysis of all PAndAS dwarf galaxies

- TRGB distances (Conn et al. 2011, 2012, 2013)
- Structural parameters and luminosities (Martin et al., in prep, 201 4?)

DERIVED PROPERTIES OF THE SATELLITES

Name	α (J2000)	$\delta(\mathrm{J} 2000)$	ϵ	θ (deg)	$r_{h}(\operatorname{arcmin})$	$r_{h}(\mathrm{pc})^{\mathrm{a}}$
And I	$0^{\mathrm{h}} 45^{\mathrm{m}} 39.8^{\mathrm{s}} \pm 0.4^{\mathrm{s}}$	$+38^{\circ} 02^{\prime} 14^{\prime \prime} \pm 6^{\prime \prime}$	0.29 ± 0.03	31 ± 4	$3.98{ }_{-0.15}^{+0.15}$	837_{-42}^{+35}
And II	$1^{\mathrm{h}} 16^{\mathrm{m}} 27.0^{\mathrm{s}} \pm 0.4^{\mathrm{s}}$	$+33^{\circ} 26^{\prime} 06^{\prime \prime} \pm 5^{\prime \prime}$	0.14 ± 0.02	30 ± 5	5.13 ± 0.10	$938{ }_{-44}^{+38}$
And III	$0^{\mathrm{h}} 35^{\mathrm{m}} 30.9^{\mathrm{s}} \pm 0.5^{\mathrm{s}}$	$+36^{\circ} 29^{\prime} 54^{\prime \prime} \pm 8^{\prime \prime}$	0.59 ± 0.04	139 ± 3	1.88 ± 0.16	389 ± 37
And V	$1^{\mathrm{h}} 10^{\mathrm{m}} 17.3^{\mathrm{s}} \pm 0.3^{\mathrm{s}}$	$+47^{\circ} 37^{\prime} 45^{\prime \prime} \pm 5^{\prime \prime}$	$0.29{ }_{-0.07}^{+0.08}$	52_{-7}^{+9}	$1.644_{-0.11}^{+0.17}$	360 ± 34
And IX	$0^{\mathrm{h}} 52^{\mathrm{m}} 52.8^{\mathrm{s}} \pm 0.7^{\mathrm{s}}$	$+43^{\circ} 11^{\prime} 59^{\prime \prime} \pm 8^{\prime \prime}$	$0.02_{-0.02}^{+0.13}$	107_{-90}^{+90}	$1.788_{-0.22}^{+0.26}$	327 ± 53
And X	$1^{\mathrm{h}} 06^{\mathrm{m}} 35.1^{\mathrm{s}} \pm 0.6^{\mathrm{s}}$	$+44^{\circ} 48^{\prime} 31^{\prime \prime} \pm 9^{\prime \prime}$	$0.29_{-0.29}^{+0.22}$	30_{-12}^{+16}	$1.00_{-0.18}^{+0.32}$	192_{-39}^{+54}
And XI	$0^{\mathrm{h}} 46^{\mathrm{m}} 19.6^{\mathrm{s}} \pm 0.6^{\text {s }}$	$+33^{\circ} 48^{\prime} 07^{\prime \prime} \pm 8^{\prime \prime}$	$0.05_{-0.05}^{+0.35}$	42 ± 36	$0.64{ }_{-0.15}^{+0.23}$	121_{-37}^{+46}
And XII	$0^{\mathrm{h}} 47^{\mathrm{m}} 28.0^{\mathrm{s}}+1.4 \mathrm{e}$ s	$+34^{\circ} 22^{\prime} 45^{\prime \prime} \pm 37^{\prime \prime}$	$0.49_{-0.49}^{+0.26}$	-4_{-16}^{+28}	$1.95_{-0.75}^{+1.25}$	499 ${ }_{-240}^{+280}$
And XIII	$0^{\mathrm{h}} 51^{\mathrm{m}} 51.0^{\mathrm{s}} \pm 0.7^{\mathrm{s}}$	$+33^{\circ} 00^{\prime} 16^{\prime \prime} \pm 14^{\prime \prime}$	$0.61{ }_{-0.19}^{+0.15}$	-23_{-9}^{+12}	$0.85{ }_{-0.30}^{+0.36}$	133_{-47}^{+93}
And XIV	$0^{\mathrm{h}} 51^{\mathrm{m}} 35.0^{\mathrm{s}} \pm 0.5^{\mathrm{s}}$	$+29^{\circ} 41^{\prime} 17^{\prime \prime} \pm 8^{\prime \prime}$	$0.21_{-0.14}^{+0.11}$	-7 ± 13	1.52 ± 0.16	$255^{\text {b }}$
And XV	$1^{\mathrm{h}} 14^{\mathrm{m}} 18.7^{\mathrm{s}} \pm 0.4^{\mathrm{s}}$	$+38^{\circ} 07^{\prime} 18^{\prime \prime} \pm 7^{\prime \prime}$	$0.26_{-0.11}^{+0.09}$	33 ± 13	$1.35{ }_{-0.12}^{+0.16}$	$238{ }_{-27}^{+37}$
And XVI	$0^{\mathrm{h}} 59^{\mathrm{m}} 30.3^{\mathrm{s}} \pm 0.4^{\mathrm{s}}$	$+32^{\circ} 22^{\prime} 34^{\prime \prime} \pm 4^{\prime \prime}$	$0.30_{-0.09}^{+0.08}$	93 ± 9	$0.98{ }_{-0.07}^{+0.09}$	$131{ }_{-19}^{+25}$
And XVII	$0^{\mathrm{h}} 37^{\mathrm{m}} 06.2^{\mathrm{s}} \pm 0.5^{\mathrm{s}}$	$+44^{\circ} 19^{\prime} 22^{\prime \prime} \pm 6^{\prime \prime}$	$0.47_{-0.14}^{+0.06}$	112 ± 11	$1.33_{-0.21}^{+0.25}$	$276{ }_{-36}^{+57}$
And XVIII	$0^{\mathrm{h}} 02^{\mathrm{m}} 16.1^{\mathrm{s}} \pm 0.4^{\mathrm{s}}$	$+45^{\circ} 05^{\prime} 32^{\prime \prime} \pm 8^{\prime \prime}$	$0.02_{-0.02}^{+0.32}$	90_{-20}^{+24}	$0.76_{-0.12}^{+0.10}$	267 ± 40
And XIX	$0^{\mathrm{h}} 19^{\mathrm{m}} 36.9^{\mathrm{s}}+2.0 \mathrm{~s}$	$+35^{\circ} 03^{\prime} 28^{\prime \prime} \pm 47^{\prime \prime}$	$0.46_{-0.09}^{+0.08}$	40_{-7}^{+6}	$11.82_{-1.49}^{+1.78}$	$2072{ }_{-422}^{+1098}$
And XX	$0^{\mathrm{h}} 07^{\mathrm{m}} 30.7^{\mathrm{s}} \pm 0.5^{\mathrm{s}}$	$+35^{\circ} 07^{\prime} 40^{\prime \prime} \pm 9^{\prime \prime}$	$0.10_{-0.10}^{+0.37}$	54_{-32}^{+52}	$0^{0.50_{-0.14}^{+0.24}}$	102 ${ }_{-27}^{+53}$
And XXI	$23^{\mathrm{h}} 54^{\mathrm{m}} 48.7^{\mathrm{s}} \pm 1.6^{\mathrm{s}}$	$+42^{\circ} 28^{\prime} 03^{\prime \prime} \pm 22^{\prime \prime}$	$0.35{ }_{-0.14}^{+0.11}$	147_{-14}^{+10}	$4.04_{-54}^{+0.65}$	989 ± 156
And XXII/Tri I	$1^{\mathrm{h}} 27^{\mathrm{m}} 40.5^{\mathrm{s}} \pm 0.8^{\mathrm{s}}$	$+28^{\circ} 05^{\prime} 22^{\prime \prime} \pm 10^{\prime \prime}$	$0.64{ }_{-0.15}^{+0.11}$	123 ± 9	$0.90_{-0.18}^{+0.35}$	230_{-87}^{+72}
And XXIII	$1^{\mathrm{h}} 29^{\mathrm{m}} 20.9^{\mathrm{s}} \pm 0.8^{\mathrm{s}}$	$+38^{\circ} 43^{\prime} 28^{\prime \prime} \pm 13^{\prime \prime}$	$0.39_{-0.06}^{+0.05}$	139 ± 5	$5.38{ }_{-0.37}^{+0.44}$	1170_{-100}^{+120}
And XXIV	$1^{\mathrm{h}} 18^{\mathrm{m}} 31.6^{\mathrm{s}} \pm 1.7^{\mathrm{s}}$	$+46^{\circ} 22^{\prime} 16^{\prime \prime} \pm 17^{\prime \prime}$	$0.11_{-0.11}^{+0.20}$	90_{-20}^{+23}	$2.41_{-0.47}^{+0.71}$	610_{-107}^{+213}
And XXV	$0^{\mathrm{h}} 30^{\mathrm{m}} 10.8^{\mathrm{s}} \pm 1.0^{\mathrm{s}}$	$+46^{\circ} 51^{\prime} 41^{\prime \prime} \pm 18^{\prime \prime}$	$0.22_{-0.18}^{+0.12}$	$8^{ \pm} 16$	3.14 ± 0.37	634 ± 93
And XXVI	$0^{\mathrm{h}} 23^{\mathrm{m}} 45.8^{\mathrm{s}} \pm 0.9^{\mathrm{s}}$	$+47^{\circ} 54^{\prime} 46^{\prime \prime} \pm 17^{\prime \prime}$	$0.15{ }_{-0.15}^{+0.39}$	$146{ }_{-52}^{+28}$	$1.144_{-0.28}^{+0.62}$	188_{-79}^{+138}
And XXVII	$0^{\mathrm{h}} 37^{\mathrm{m}} 52.0^{\mathrm{s}} \pm 11^{\mathrm{s}}$	$+45^{\circ} 20^{\prime} 02^{\prime \prime}{ }_{-80} 96 \prime \prime$	$0.76{ }_{-0.04}^{+0.06}$	124 ± 4	$19.74_{-2.89}^{+3.37}$	$7212^{\text {c }}$
And XXX/Cas II	$0^{\mathrm{h}} 36^{\mathrm{m}} 34.6^{\mathrm{s}} \pm 0.5^{\mathrm{s}}$	$+49^{\circ} 38^{\prime} 47^{\prime \prime} \pm 5^{\prime \prime}$	$0.40_{-0.07}^{+0.06}$	-65 ± 7	$1.44_{-0.13}^{+0.17}$	260 ± 43
NGC 147	$0^{\mathrm{h}} 33^{\mathrm{m}} 12.6^{\text {s }} \pm 0.6^{\text {s }}$	$+48^{\circ} 30^{\prime} 31^{\prime \prime} \pm 10^{\prime \prime}$	0.31 ± 0.02	29 ± 3	$8.4_{-0.23}^{+0.28}$	1945_{-76}^{+65}
NGC 185	$0^{\mathrm{h}} 38^{\mathrm{m}} 58.1^{\mathrm{s}} \pm 0.2^{\mathrm{s}}$	$+48^{\circ} 20^{\prime} 15^{\prime \prime} \pm 4^{\prime \prime}$	0.22 ± 0.02	43 ± 2	$5.03_{-0.07}^{+0.12}$	925_{-43}^{+37}

The satellite system of M3I

A homogeneous analysis of all PAndAS dwarf galaxies

- TRGB distances (Conn et al. 2011, 2012, 2013)
- Structural parameters and luminosities (Martin et al., in prep, 2014?)
- Radial velocities (Collins et al. $2013 a, b+$ Tollerud et al. 2013)

The Local Group dSph size-luminosity relation

Brasseur, Martin et al. (201 I)

A rotating disk of satellites

Ibata et al. (20 1 3)
Conn et al. (2013)

Beyond I 50 kpc with PS I

Martin et al. (2013ac)

What do Andies look like in PS I?

Andromeda 1

PSI M3I candidate RGB map

Per I/And XXIII
$0_{0}^{0} 0_{0}^{00}$

Lacerta I

Andromeda $X X X I$

$$
M v \sim-I I .5
$$

Spectroscopic confirmation

Lacerta I

Cassiopeia III

Perseus 1

Summary

- ~40 dwarf galaxies around Andromeda
- 16+ from PAndAS, 3+ from PSI (+ upcoming follow up)
- Testing faint end of galaxy formation in a cosmological context:
\rightarrow The M3I (/Local Group) dwarf galaxy (mass) profile (Collins et al. 2013, 2014)
\rightarrow The M3I (/Local Group) size-luminosity relation
\rightarrow Anisotropic distribution of M3I dwarf galaxies
- Upcoming HST observations for 17 M3I dwarf galaxies (accurate distances, SFH, ...)
- Towards "observations" of simulations

Thomas, Martin, Ibata et al. (in prep) based on Lowing et al. (20| 4)

