Comparing the Star Formation Histories of the M31 and.Milky Way Satellites
(Weisz et all. 2014, ApJ,.789; 24)

Star Formation History of Leo I

Weisz+ 2014a

Star Formation History of Leo I

Weisz+ 2014a

Why
 HST?

Ground

Uniformly Measured SFHs of 40 LG Dwarfs from archival HST / WFPC2 imaging

Dan Weisz, Andy Dolphin, Evan Skillman, Karrie Gilbert, Julianne Dalcanton, Ben Williams

Paper I. Data and Characterizing SFHs (Weisz+ 2014a)
Paper II. Signatures of Reionization (Weisz+ 2014b)
Paper III. Quenching Timescales (Weisz+ 2014 submitted)
The Very Faint End of the UV Luminosity Function over Cosmic Time: Constraints from the Local Group Fossil Record
(Weisz, Johnson, \& Conroy 2014 submitted)

Photometry from the HST LG Stellar Photometry Archive: http://astronomy.nmsu.edu/logphot

Star Formation Histories: http://people.ucsc.edu/~drweisz

Homogenous reduction and analysis

Heterogenous observations

AndII

Amorisco+ 2014 kpo

$M_{v}=-12, \log \left(M_{\star} / M_{\odot}\right) \sim 7$ $\mathrm{D}_{\mathrm{M} 31} \sim 195 \mathrm{kpc}$

Weisz+ 2014c

AndXVI

F475W-F814W

Weisz+ 2014c

AndXVI

F475W-F814W

Weisz+ 2014c

Extended SFHs of And II \& And XVI

Weisz+ 2014c

AndXVI \& Faint MW Satellites

AndII \& Luminous MW Satellites

Summary

Deep HST imaging captures oMSTO of AndII and AndXVI

Both have extended SFHs to z~0.5, despite being 2 dex in mass apart

Both SFHs different than MW satellites of similar luminosity

Cycle 22 HST programs (Skillman, Martin, Weisz) will nearly complete imaging of M31 \& `Field' dwarfs to > 8-9 Gyr MSTO

