Dwarf satellite galaxies exist in three different states:

Spheroidals, Streams & Stellar Halo

Vasily Belokurov, Institute of Astronomy Cambridge, UK

The point of this talk

ARTICLE IN PRESS

New Astronomy Reviews xxx (2013) xxx-xxx

New Astronomy Reviews

journal homepage: www.elsevier.com/locate/newastrev

Galactic Archaeology: The dwarfs that survived and perished

Vasily Belokurov*

Institute of Astronomy, Cambridge, United Kingdom

• Is to convince you that the progress can (only) be made through a simultaneous analysis of both the surviving and the destroyed dwarfs.

- Star formation in dwarfs
- Dwarf accretion onto MW
- MW mass distribution

Are dwarfs in different states different?

Tolstoy et al, 2009

Are dwarfs in different states different?

Tolstoy et al, 2009

Are dwarfs in different states different?

Tolstoy et al, 2009

M. S. Pawlowski, J. Pflamm-Altenburg and P. Kroupa 1112

7 known dwarf galaxy stellar streams: Sagittarius, Tri-And, Monoceros, Her-Aquila, Cetus, Virgo, Orphan none aligned with the so-called VPOS!

aslo recall Anna Frebel's talk on Tuesday

The genesis of the MW stellar halo

+

Monthly Notices ROYAL ASTRONOMICAL SOCIETY

Mon. Not. R. Astron. Soc. 416, 2903-2915 (2011)

doi:10.1111/j.1365-2966.2011.19237.x

The Milky Way stellar halo out to 40 kpc: squashed, broken but smooth

A. J. Deason,* V. Belokurov* and N. W. Evans* Institute of Astronomy, Madingley Road, Cambridge CB3 0HA

Stellar halo density profile as inferred from Blue Horizontal Branch & Blue Straggler stars

The genesis of the MW stellar halo

+

Monthly Notices ROYAL ASTRONOMICAL SOCIETY

Mon. Not. R. Astron. Soc. 416, 2903-2915 (2011)

doi:10.1111/j.1365-2966.2011.19237.x

The Milky Way stellar halo out to 40 kpc: squashed, broken but smooth

A. J. Deason,* V. Belokurov* and N. W. Evans* Institute of Astronomy, Madingley Road, Cambridge CB3 0HA

Stellar halo density profile as inferred from Blue Horizontal Branch & Blue Straggler stars

THE ASTROPHYSICAL JOURNAL, 763:113 (9pp), 2013 February 1 © 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637X/763/2/113

BROKEN AND UNBROKEN: THE MILKY WAY AND M31 STELLAR HALOS

A. J. DEASON^{1,2,4}, V. BELOKUROV², N. W. EVANS², AND K. V. JOHNSTON³ Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA 95064, USA; alis@ucolick.org ² Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK ³ Department of Astronomy, Columbia University, New York, NY 10027, USA Received 2012 October 16; accepted 2012 December 5; published 2013 January 16

- Breaks represent apo-centers of accreted satellites
- Breaks are strongest if a massive satellite (or a small group) is accreted early on, followed by a long quiescent period

The genesis of the MW stellar halo

+

Monthly Notices ROYAL ASTRONOMICAL SOCIETY

Mon. Not. R. Astron. Soc. 416, 2903-2915 (2011)

doi:10.1111/j.1365-2966.2011.19237.x

The Milky Way stellar halo out to 40 kpc: squashed, broken but smooth

A. J. Deason,* V. Belokurov* and N. W. Evans* Institute of Astronomy, Madingley Road, Cambridge CB3 0HA

Stellar halo density profile as inferred from Blue Horizontal Branch & Blue Straggler stars

THE ASTROPHYSICAL JOURNAL, 763:113 (9pp), 2013 February 1 © 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637X/763/2/113

BROKEN AND UNBROKEN: THE MILKY WAY AND M31 STELLAR HALOS

A. J. DEASON^{1,2,4}, V. BELOKUROV², N. W. EVANS², AND K. V. JOHNSTON³ Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA 95064, USA; alis@ucolick.org ² Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK ³ Department of Astronomy, Columbia University, New York, NY 10027, USA Received 2012 October 16; accepted 2012 December 5; published 2013 January 16

- Breaks represent apo-centers of accreted satellites
- Breaks are strongest if a massive satellite (or a small group) is accreted early on, followed by a long quiescent period

Raja Guhathakuurta

Actually, how many ultra-faints are out there?

also recall Beth Willman's talk on Tuesday

Actually, how many ultra-faints are out there?

also recall Beth Willman's talk on Tuesday

bright sat 100 kpc

of sub-haloes

Actually, how many ultra-faints are out there?

also recall Beth Willman's talk on Tuesday

bright sat 100 kpc

of sub-haloes

By playing with the flatness of the radial density profile of the ultra-faint satellites it is Possible to predict either a few tens or more than a thousand such objects around MW!

The radial density profile of the faintest satellites

"TriAnd and its Siblings: Satellites of Satellites in the Milky Way Halo" Deason et al, 2014, accepted to MNRAS

Some WISE magic to reveal stellar halo sub-structure

Some WISE magic to reveal stellar halo sub-structure

⁵Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, Sydney NSW 2006, Australia

⁶Observatoire Astronomique de Strashourg, Université de Strashourg, CNRS, UMR 7550, 11 rue de l'Université, E-67000 Strashourg, France

Reconstructing star-formation histories of destroyed dwarfs

Having located sub-structure in the halo, combine different stellar tracers!

stream track: M giants + MSTO distances: BHBs velocities: RGB

Reconstructing star-formation histories of destroyed dwarfs

Metallicity-Age relation for the Sgr debris

de Boer et al, in prep

SFH & MDF for the Sgr debris

Sgr dwarf disruption and the Galactic DM content

Belokurov et al, 2014

Fast stream production Models of Sgr precession

mLCS=modified Lagrange Cloud Stripping

Gibbons et al, 2014 recall also Adam. Bowden's talk yesterday

simulation by Victor Debattista

Fast stream production Models of Sgr precession

mLCS=modified Lagrange Cloud Stripping

Gibbons et al, 2014 recall also Adam. Bowden's talk yesterday

simulation by Victor Debattista

Fast stream production Models of Sgr precession

Bowden's talk yesterday

r/kpc

Mass profile of the Galaxy to 100 kpc

Table 3. The enclosed mass of the Milky Way as inferred from the stream precession modeling. We provide estimates at 50, 100, 150 and 200 kpc. Along with 68% and 95% confidence intervals.

$r/{ m kpc}$	$M(r)/10^{11} M_{\odot}$	$1\sigma/10^{11}M_{\odot}$	$2\sigma/10^{11}M$
50	2.9	0.4	0.9
100	4.1	0.7	1.6
150	4.9	1.0	2.4
200	5.6	1.2	3.0

Conclusions

- Progenitor(s) of the MW stellar halo was (likely) one massive system or a small group
- Accreted (but not fully dissolved) dwarfs are not aligned with the Magellanic family. Or each other.
- First detection of alpha knee in Sgr. First measurement of a SFH of a disrupting dwarf
- The number of expected dwarf satellites around the Galaxy is likely to go down
- First, due to the UFD radial profile assumptions and possible associations of the faintest satellites with big systems
- Second, due to the reduced MW mass
- WISE is magic.TBTF solved.

Caveats

- in the field?
- If the accretion was quiescent after the bouts of very early
- estimates
- Way (see Vera-Ciro & Helmi, Gomez et al)

• Why would the faintest satellites only live in bigger systems and not

accretion, what about all the dwarf galaxy streams in the MW?

• Our low MW mass starts to disagree strongly with most other

• Can the Sgr disruption model be broken by assuming a rotating progenitor (see Penarrubia et al 2010/2011) or perturbed Milky