Chemical signatures in dwarfs

Gabriele Cescutti,
Cristina Chiappini, Ugur Ural
and Andreas Koch (Landessternwarte Heidelberg)
Neutron capture elements
from Truran 1981 to ~5 years ago

s-process

Massive stars
(& NS mergers)
electron capture SN
neutron stars mergers
Magneto rot. driven SN ...

r-process

< 30Myr
(excluding NS mergers)

>300Myr

Low-(intermediate) mass stars

Early Galaxy

site

time scale

yields

Neutron capture elements
from Truran 1981 to ~5 years ago

s-process

Massive stars
(& NS mergers)
electron capture SN
neutron stars mergers
Magneto rot. driven SN ...

r-process

< 30Myr
(excluding NS mergers)

>300Myr

Low-(intermediate) mass stars

Early Galaxy

site

time scale

yields

Neutron capture elements
from Truran 1981 to ~5 years ago

s-process

Massive stars
(& NS mergers)
electron capture SN
neutron stars mergers
Magneto rot. driven SN ...

r-process

< 30Myr
(excluding NS mergers)

>300Myr

Low-(intermediate) mass stars

Early Galaxy

site

time scale

yields

Busso et al. 2001

Cristallo+ 2011
Karakas+ 2012)
Satellite galaxies and dwarfs in the local group

AIP

First signature
Spread in the n.c. elements (Ba)

Density plot of long living stars for stochastic model (Cescutti '08) + rare progenitors for the r-process events:
- small mass range as Electron capture SNe (8-10Msun)
- fraction of the SNe, as Magneto Rotational Driven SNe (5-10%)

We can reproduce this spread in the Galactic halo

Data collected in Frebel10.
For Sr yields: scaled Ba yields according to the r-process signature of the solar system (Sneden et al ‘08)

It is impossible to reproduce the data, assuming only the r-process component, enriching at low metallicity. Well known issue (see Sneden+ 03, François+07, Montes+07)
Signatures of Fast Rotators found in the Galactic Halo

(1) **Large amounts of N in the early Universe** (Chiappini et al. 2006 A&A Letters)

(2) **Increase in the C/O ratio in the early Universe**

(3) **Large amounts of 13C in the early Universe** (Chiappini et al. 2008 A&A Letters)

(4) **Early production of Be and B by cosmic ray spallation** (Prantzos 2012)

5. Early production of neutron capture elements through a boosted s-process (Sr,Ba,...)
Neutron capture elements
The picture since Chiappini+2011 (Nature)

s-process
Early Galaxy

r-process

site

Low-(intermediate) mass stars

 Massive stars (& NS mergers)
O-Ne-Mg core explosions? NS stars mergers? Magneto rot. driven SN? many scenarios...

rotating Massive stars

< 30Myr (excluding NS mergers)

< 30Myr

Massive stars

>300Myr

time scale

yields

Busso+ 2001
Cristallo+ 2011
Karakas+ 2012

Frischknecht+ 2012

Pignatari+ 2008,
Limongi yields still unpublished

....
Second signature

Spread in the light to heavy s-process elements

s-process from fast rotators +
EC SN (or MRD) as r-process site

It is possible to reproduce the Galactic halo data

Cescutti, Chiappini, Hirschi, Meynet and Frischknecht (2013)
The dSph satellites of our Galaxy

We have developed recently a model for **Ursa minor**. Each dSph shows a different star formation history. The model assumes the observed SF by Carrera+02 and fix the infall timescale to match the MDF.

The nucleosynthesis is exactly the same as the halo one.
The stochastic model is able to reproduce all the data (they are in the colored area). In this case, we show the model for MRD (10%).

More data are important to understand if the distribution of modeled stars in [Ba/H] is in agreement with observed stars (in the case of the halo we have also investigate this see Cescutti&Chiappini’14)

Cescutti et al. in prep
We can confirm that the spinstars are important for this dwarf galaxy to explain the spread in [Y/Ba].

No peculiar signature compared to Galactic halo
(at least not for this dwarf and with the present data)
The model for an ultra faint dwarf: Hercules

- short SF history (<200Myr)
- strong winds

We constrain the model to match the MDF (and the total stellar mass)
The nucleosynthesis is exactly the same as the halo.
We test two different (initial) total mass of gas.
A: 1×10^5 Msun
B: 2×10^5 Msun
(C: 5×10^5 Msun)
preliminary model

AIP

Aden+11

0.04Msun/pc2
0.08Msun/pc2
1 $\times 10^5$Msun gas
2 10^2Msun
stelle 0.002

stelle 0.037 6 Msun
dinamica 2.6 6Msun
~0.01
MRD scenario:
10% of SNe produce r-process

SF is very low due
low density in this system

rate of massive stars is low

tiny probability to produce a r-process event

Enriched manly by spinstars, with
a low enrichment of Ba.
Model with half of the gas mass compared to model B

Lower SF rate

Formation of r-process event has an extremely low rate

lower fraction of r-process rich stars

Different from the present data (no observations) but the trend is recovered.

The signature of neutron capture elements does show that UF cannot have formed the Galactic halo.
Satellite galaxies and dwarfs in the local group

Hercules

Distribution functions model A and B

[Fe/H] < -2.5

Koch data (2)

Francois data (2)

Results in the halo
Cescutti & Chiappini'14
Difficult to make any strong statement, just 2 data points for Hercules (but similar characteristics are observed in other UF dwarfs - Frebel talk)

At the present, the data we have confirm the necessity to have an s-process production by fast rotating massive stars.

So maybe the first generation(s) of stars was really fast rotating!

Second signature spread in the light to heavy s-process elements in Hercules
Conclusions

The case of Ursa minor (and at the present of Hercules too) suggests that the contribution of s-process by spinstars is important to explain the observed abundances as in the Galactic halo (more investigation on other dSph needed).

First Stars should have been fast rotating.

The neutron capture elements in Hercules ([Ba/Fe] [Sr/Fe]) tends to be lower compared to the Galactic halo. This signature is present also in the others UF dwarfs.

Only a small fraction can have contributed to the formation of the Galactic halo.

The case of the Hercules (and in general UF dwarfs) is interesting also because they can help constrain the rate of r-process events.