Dwarf galaxies of the Local Group as tests of gravity

B. Famaey (Observatoire Astronomique de Strasbourg)

Dark Matter

ACDM galaxy scale problems

- « Minor » problems
- Large disks with low bulge/disk ratio
- Missing sats. Problem
- Cusp problem

Bigger problems

- Tightness of baryonic Tully-Fisher relation
- Mass Discrepancy-Surface density relation
- TBTF problem
 & sats phase-space
 correlation

Baryonic Tully-Fisher relation: Log $M_b = 4 \log V - \log \beta$

Zero-point defines an acceleration constant $a_0 \approx V^4/(GM_b) \approx 10^{-10} \text{ m/s}^2$ Such that $\beta = Ga_0$

$$a_0^2 \sim \Lambda$$

Effective modification of gravity by modifying DM action

$$S_{\rm DM}\equiv\int d^4x\sqrt{-g}\,[c^2(J_\mu\dot{\xi}^\mu-
ho)-W(P)],$$
 Blanchet & Le Tiec 2009

$$egin{aligned} &rac{d\mathbf{v}}{dt} = \mathbf{g} - \mathbf{f}, \ &rac{d^2 m{\xi}}{dt^2} = \mathbf{f} + rac{1}{
ho}
abla [W(P) - PW'(P)] + (\mathbf{P}
abla) \mathbf{g}, \ &-
abla . (\mathbf{g} - 4\pi \mathbf{P}) = 4\pi G(
ho_b +
ho). \end{aligned}$$

 $W(P) \propto \Lambda/(8\pi) + 2\pi P^2 + 16\pi^2 P^3/(3a_0) + \mathcal{O}(P^4)$

$$g \propto -W'(P) \longrightarrow$$
 MOND, i.e., $g = (g_n a_0)^{1/2}$ Milgrom 1983
in weak field $g << a_0$

Reproduces CMB & all ACDM cosmology to first order in perturbations !!

Some laws of galactic dynamics deriving from MOND

- 1) ~1/r acceleration $\rightarrow V_{\infty}$ = cst and isothermal « dark halo » to large r
- 2) $V^2/r = (GMa_0)^{1/2}/r$ at large $r \rightarrow$ baryonic Tully-Fisher relation
- 3) $V^2/r = a_0$ as a transition acceleration
- 4) a_0/G as critical surface density for disk stability since $\delta a/a = \delta M/2M$ instead of $\delta M/M$
- 5) Correlation between the value of the average baryonic surface density and **steepness** of RC
- 6) Features in the baryonic distribution imply features in the RC
- 7) External field effects

Local Group Orbits

M31 dwarfs

Deep-MOND virial relation
$$\sigma_{iso}pprox (rac{4}{81}MGa_0)^{1/4}~\sigma_{efe}pprox (rac{MG_{eff}}{3r_{1/2}})^{1/2}$$

In McGaugh & Milgrom (2013): 16/17 ok, only AndV problematic (too low prediction of 5 km/s w.r.t. measured 10 km/s)

A priori predictions compared to Collins et al. (2013) and Tollerud et al. (2013): correct for And XVII, And XIX, And XX, And XXI, And XXIII, And XXV, And XXVIII & And XIX=>large dSph with low σ because EFE

Further predictions: And XXX (Cass II): 3.5+- 1.5 km/s And XXXI (Lac I): 9+-1.5 km/s And XXXII (Cass III): 10.3+-1.7 km/s

McGaugh & Milgrom (2013b)

For Local Group dwarfs:

 Perseus I: 6.5+-1.1 km/s

 Cetus:
 8.2+-1.5 km/s

 Tucana:
 5.5+-1 km/s

Pawlowski & McGaugh (2014)

MW classical dwarfs

Lüghausen, Famaey & Kroupa 2014

	$M_{0.1}/L_{ m V,0.1}$		$M_{0.3}/L_{ m V,0.3}$		$M_{r_{ m max}}/L_{ m V,tot}$	
	predicted	observed	predicted	observed	predicted	observed
Fornax	[10.9, 29.9]	$12.9^{+7.5}_{-4.3}$	[8.1, 22.8]	$6.8\substack{+0.5\\-0.7}$	[14.3, 47.9]	12
Sculptor	[8.9, 40.5]	40^{+74}_{-26}	[8.9, 33.7]	23^{+2}_{-7}	[8.9, 50.1]	38
Sextans	[9.5, 50.3]	280^{+93}_{-47}	[9.5, 50.3]	143^{+113}_{-35}	[9.5, 50.3]	108
Carina	[10.7, 54.5]	293^{+43}_{-37}	[10.7, 48.0]	81^{+10}_{-5}	[10.7, 59.4]	81
Draco	[8.0, 44.7]	55^{+122}_{-12}	[8.0, 44.7]	137^{+15}_{-21}	[8.0, 44.7]	346

MW ultrafaints

MW ultrafaints

McGaugh & Wolf 2010

 $r_{t,M} = D\left(\frac{m}{2M}\right)^{1/3}$

Conclusion

- Independently from the theoretical framework, the MOND formula is an extremely efficient way (AND CURRENTLY THE ONLY WAY) of **predicting** the gravitational field in galaxies (hence σ of dSphs)

MOND in the LG => past interaction between MW & M31 ~11 Gyr ago
 might have triggered TDGs and observed VPOS and GPoA

- The (very) few TDGs with RC are on the BTFR (in NGC 5291 system)
- M31 dwarfs & isolated LG dwarfs follow MOND predictions

- Classical MW dwarfs ok, but Carina needs quite high stellar M/L~5, Draco needs outliers or binaries to decrease observed dispersion

-Ultrafaints far off the MOND predictions=>binaries + nonequilibrium dynamics? Or exclude MOND phenomenology on these scales and/or for pressure supported systems if one trusts observed σ & equilibrium