

LOFAR observations of the quiet Sun

C. Vocks, G. Mann, and F. Breitling

EUROPÄISCHE UNION Investition in unsere Zukunft Europäischer Fonds für regionale Entwicklung

LOFAR structure:

- Central core (Exloo, NL) 24 stations
- 14 remote Stations (NL)
- 9 (+4) International Stations

Frequency range:

- Low Band: 10 90 MHz
- High Band: 110 250 MHz

New setup: Software telescope

LOFAR: Simple antennae, LBA

Low Band antennae:

- Low frequencies:
 30 80 MHz
- Simple dipoles
- 2 polarizations

LOFAR: Simple antennae, HBA

High Band antennae:

- High frequencies: 120 – 240 MHz
- 16 dipole together
- 2 polarizations
- In Styrofoam block, covered with foil

Completion of fields:

LBA: December 2009 HBA: May 2010

Station container:

- Antennae signals are combined
- Digitized

#+ ++*

AIP

- Frequency channels
- Combined to "station beam"
- Reduction of data rate to 4 Gbit/s

Data are send to central correlator in Groningen

Data processing: Groningen

Central correlator:

. ↓ ↓ ↓ ↓ ↓

AIP

- "Cobalt" GPU cluster
- Data from all stations
- Interferometer
- Real-time processing
- Radio maps of the sky
- Further processing
- Long-term Archive

Enormous versatility and flexibility

Objectives:

- Structure of the solar corona
- Density profile in LOFAR's low band range
- Corresponds to upper corona: $\omega > \omega_p = \sqrt{Ne^2} / m_e \varepsilon_0$
- Transition into solar wind

Observations:

- Dataset from cylce 0
- Discrete frequencies with 5 MHz separation, 19 79 MHz

Solar observations:

- The Sun is very dynamic
- Short-lived features associated with radio bursts
- \rightarrow Snapshot imaging, e.g. 1 s or 0.25 s cadence

Quiet Sun:

- Solar radio emission is fairly constant
- Take advantage of changing baselines in the uv plane
 - \rightarrow Aperture synthesis imaging

10

12th Potsdam Thinkshop – The Dynamic Sun

4000 LOFAR 64 after 2013-08-08 Image: 0 08:02:13 UT 3000 73.63 MHz 10737.4 s - 56 • 74 MHz 2000 - 48 • 3 h intensity [Jy/beam] -40 1000 V[arcsec] - 32 0 -24 -1000-16 -2000 8 -3000 ·0 -40001000 2000 -4000 -3000 -2000 -1000 Ó 3000 4000 x [arcsec]

intensity [Jy/beam]

4000 - 32 LOFAR after 2013-08-08 Image: 0 08:02:13 UT 3000 -28 68.75 MHz 10737.4 s • 69 MHz -24 2000 • 3 h -20 1000 V[arcsec] -16 0 -12 -10008 -2000 -3000 0 -40001000 2000 -4000 -3000 -2000 -1000 Ó 3000 4000 x [arcsec]

intensity [Jy/beam]

4000 LOFAR 28 after 2013-08:08 Image: 0 08:02:13 UT 3000 54.10 MHz 10737.4 s -24 • 54 MHz 2000 -20 • 3 h 1000 -16 V[arcsec] 0 -12 -10008 -2000 -3000 n -40001000 2000 -4000 -3000 -2000 -1000 Ó 3000 4000 x [arcsec]

27 October 2015

17

intensity [Jy/beam]

27 October 2015

19

• 3 h

22

Profiles:

* ##+ ++

AIP

AIP

Profiles:

* ##+ ++

AIP

Profiles:

#+ ++

AIP

Profiles:

* ##+ ++

AIP

Profiles:

* ##+ ++

AIP

Profiles:

* ##+ ++

AIP

Profiles:

• ##+ ++

AIP

- Average over azimuth
- Normalized to
 image center

Coronal intensity profiles

Radio wave ray path:

- n = $(1 \omega_p^2 / \omega^2)^{1/2} = 1$ in IP space
- $n \rightarrow 0$ near plasma freq.
- Total reflectance

Free-free emission:

- Proportional to N²
- Line-of-sight integral

AIP

Resulting intensity model:

$$\log\left(\frac{i(\alpha)}{i(\alpha=0)}\right) \propto \left(\frac{\alpha \times 1\mathrm{AU}}{\mathrm{R}\omega}\right)^2$$

12th Potsdam Thinkshop – The Dynamic Sun

Solar radius from LOFAR data

Fit with density model:

- Hydrostatic model (Mann et al., 1999)
- Model parameters:
 - > T = $1.3 \cdot 10^6$ K > N₀ = $6.0 \cdot 10^{15}$ m⁻³

LOFAR imaging provides coronal density models

##++

AIP

α

Local maxima for small α

Increasing α:

- Curvature of ray path leads to longer path length
- Line-of-sight integral yields higher values
- Absorption of radio waves in the corona also has to be considered

 $\mathsf{R}_{\mathsf{Sun}}$

R_ω

Coronal parameters:

- T = $1.4 \cdot 10^{6}$ K
- $R\omega = 2 R_{Sun}$
- f = 60 MHz
- beam size: 150"

Multiple dependencies:

- Mainly $R\omega$, which is sought for
- But also coronal temperature
- Search for best fit

Quiet Sun observations:

- Improve uv coverage by aperture synthesis
- Example: 8 August 2013, 3 h observation time

Analysis of solar images:

- Refraction is important in the corona
- Simple wave propagation model leads to a surprisingly good density profile
- More accurate approach is still necessary