The Impact of Sunspot Rotation on High Flare Energy Active Regions

Andrew Walker & Daniel Brown University of Central Lancashire

Thinkshop 12: 28th October 2015

Motivation

Evershed, 1910: First observations of sunspot rotation.

Stenflo, 1969: Suggested sunspot rotation as mechanism to generate flare energy.

Brown et al., 2003:

- Seven sunspots studied using TRACE data.
- 150 200° rotation over 3 5 days.
- Six out of seven of these associated with flare events.

More recent work: Case studies, torsional oscillators, modeling, subsurface flows.

Sunspot Rotation

Rotation about the umbral centre of a sunspot.

What role does sunspot rotation play in X-class flare events?

X-class flare producing regions from April 2010 to May 2015:

26 X-class flare producing active regions.

67 sunspots.

42 X-class flares.

Rotation properties of each sunspot are calculated.

NOAA 11158

SDO/HMI white light images.

Analysis: The Method

Analysis: The Output

2. Velocity profile

3. Rotation against time

Analysis: Isolating the Penumbra

Significant Rotation

Kazachenko et al. (2009): 34° rotation enough to power M8.0 flare.

Sunspots with >30° rotation show a penumbral peak which we can isolate:

109° Maximum rotation:

16° Maximum rotation:

Rotation (degrees)

Results: Profiles

10/16

Total Absolute & Net Active Region Rotation

Total absolute rotation: Total unsigned rotation of all sunspots in the region

Net rotation: Total signed rotation of all sunspots within the region.

For example: An active region with 3 sunspots:

A: -50° rotation B: 100° rotation C: -25° rotation

Will have a total absolute rotation of 175°

And a net rotation of 25°

Total Absolute Active Region Rotation

Sum of sunspot rotation within each region neglecting direction of rotation.

Net Active Region Rotation

But the rotation direction can affect the magnitude of twist injected into flux tube.

Concluding Remarks

1. The sample is restricted to X-class flare producing regions only

- 2. 25 out of 26 active regions analysed contain <u>at least one</u> sunspot with significant rotation.
- 3. All active regions below 60° absolute and net rotation traverse the Eastern limb fully formed.

There is a strong relationship between high-flare energy regions and sunspot rotation.

Future Work

25

?

High Rotation Low Rotation

1

?

High	Flare	Energy
------	-------	--------

Low Flare Energy

Thank you for listening.

Questions?

Results: For Comparison

X-flare region:

Non-X-flare region:

Results: Profiles

Rotation Mechanisms

Projection effect? Twisted flux tube emerging.

Re-balancing of twist? If energy is lost through a flare event, the flux tube may be seen to unwind.