

Hybrid Simulations of Chromospheric Flare HXR

Sources

M. Varady^{1,2}, Z. Moravec², J. Kašparová²,

¹ Astronomical Institute of the Academy of Sciences of the Czech Republic

² J.E. Purkyně University, Ústí nad Labem, Czech Republic

Motivation

Recent RHESSI measurements of vertical extent of HXR sources are inconsistent with predictions given by CTTM (Brown, 1971).

RHESSI observations:

energy dependent size typically 2 - 6 arcsec
i.e. 1.5 - 4.5 Mm (Kontar et al. 2008, 2010, Battaglia et al. 2011)

Theory (CTTM):

~ 1 arcsec and smaller (under ~1 Mm)

Attempts to model HXR sizes:

- source sizes modelled for prescribed density structures of the atmosphere with magnetic mirroring and various µ0 distributions (Battaglia et al. 2012) - sources under ~1.5 arcsec
- accounting for NUI effects of target plasma prescribed artificially (O'Flannagain et al. 2015)
 - sources up to ~ 2.3 arcsec at 40 keV

Observed FWHM of HXR source event 6th January, 2004 (Battaglia et al. 2012)

HXR source vertical sizes

The key factors influencing HXR source sizes (also talk of M. Kuhar HXR and WL):

- electron beam: F(t), delta, E₀, initial pitch angle distribution
- target atmosphere temperature, density and ionisation structure
- magnetic structure of the loop (mirroring)

Observations done by RHESSI:

• S/N ratio to produce a RHESSI image - ~ 5 - 10 rotations: 20 - 60 s of time evolution in a single flare loop

Substantial changes in the flaring atmosphere within first several tens of seconds -> vertical evolution of HXR source expected.

Modelling of HXR source sizes

Parameters:

- non-convergent semicircular single flare loop L=15 Mm
- HS VAL C initial atmosphere (Vernazza et al., 1981)
- power-law beam generated at the apex

$$F(E,\mu_0,z_0=0) = M(\mu_0)(\delta_p - 2) \frac{F_0}{E_0^2} \left(\frac{E}{E_0}\right)^{-\delta_p}$$

• $E_0 = 20 \text{ keV}, E_1 = 150 \text{ keV}, \delta = 3, 5, 7, F_0 = 1 \text{ and } 2x10^{10} \text{ erg cm}^{-2} \text{ s}^{-1}, M(\mu_0)$ - uniformly distributed pitch-angle cosines in $\mu_0 \in (0.5, 1), F_0(t) = F_0$ for t > 2.5 s

Hybrid code Flarix (generally hybrid non-LTE code):

- test particle code + 1D HD code (Kašparová et al. 2009, Varady et al. 2010, Varady et al. 2014)
- TP code based on Bai (1982) alternative to direct solution of Fokker-Planck eq. (MacKinnon & Craig 1991)
- self-consistent modelling of time evolution of chromospheric HXR sources -> source sizes (metodology according to Battaglia et al., 2012)

Test particle code

kinematics of non-thermal e⁻ δ = 3 for VAL C atmosphere with magnetic mirror R_m = 5 (bottom of the mirror - dotted line)
energy deposits for F = 2.5x10⁹ erg cm⁻² s⁻¹ (solid line).

2000

2500

1500

0

500

1000

Dooition [1m]

Non-thermal e⁻ propagation and HXR distribution

12th Potsdam Thinkshop

27th October, 2015

1-D hydrodynamics

Evolution of low beta plasma along magnetic field lines in one fluid approximation (Kašparová et al. 2009, Varady et al. 2010).

Physics:

- flare heating calculated by the test particle code
- thermal conduction classical Spitzer formula (along field lines)
- H ionisation H ionisation modified Saha eq. (Brown 1973)
- RL optically thin corona and TR
- RL optically thick analytic approximation of RL from VAL (Peres, 1982) no radiative transfer

Numerical methods:

- convection LCPFCT algorithm for solving generalised continuity equations (NRL)
- explicit algorithm time-step splitting method
- thermal conduction in flare loop centred algorithm (Crank-Nicholson)

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial s} (\rho v_s) &= 0\\ \frac{\partial \rho v_s}{\partial t} + \frac{\partial}{\partial s} (\rho v_s^2) &= -\frac{\partial P}{\partial s} + F_g + F_\nu\\ \frac{\partial E}{\partial t} + \frac{\partial}{\partial s} (Ev_s) &= -\frac{\partial}{\partial s} (v_s P) + \frac{\partial}{\partial s} \mathcal{F}_c + \Delta \mathcal{E}_p - \mathcal{R} + \mathcal{I} + \mathcal{S}\\ P &= n_H k_B (\vartheta + x + \varepsilon) T \qquad E = U + \frac{1}{2} \rho v_s^2 \end{aligned}$$

Typical results ($F_0 = 2x10^{10}$, delta = 7)

12th Potsdam Thinkshop

27th October, 2015

Results - HXR source sizes

For first 20 s of heating and a single loop:

- maximum source sizes on small or medium energies 20-40 keV < 1.5 arcsec
- at high energies sources smaller
- week and obscured dependence of source size on energy flux and delta

Conclusions

- chromospheric HXR source sizes modelled assuming a single flare loop and 20 s time evolution resulting in significant changes of density, temperature and ionisation structure along the loop are < 1.5 arcsec inconsistent with observations, confirmation of results obtained by Battaglia et al. (2012)
- for energies above ~50 keV the size of chromospheric HXR sources tends to decrease with energy
- no obvious relations between energy flux, delta and source size

Plans for future:

- longer simulations ~10² s will be performed for more initial pitch angle distributions (incl. uniform in angles) and a single flare loop with converging B
- extension of the single loop model to multi-thread flare loop

The research leading to these results has received funding from the European Community's Seventh Frame Programme (FP7/2007-2013) under grant agreement no. 606862 (F-CHROMA).

12th Potsdam Thinkshop

Thank You!

The research leading to these results has received funding from the European Community's Seventh Frame Programme (FP7/2007-2013) under grant agreement no. 606862 (F-CHROMA).

12th Potsdam Thinkshop

27th October, 2015